RHIC Accelerator Achievements and Planned Upgrades

RHIC overview

Luminosity and polarization evolution

Future upgrade path

RHIC – a High Luminosity (Polarized) Hadron Collider

Delivered Luminosity and Polarization

<u>Nucleon-pair luminosity</u>: luminosity calculated with nucleons of nuclei treated independently; allows comparison of luminosities of different species; appropriate quantity for comparison runs.

Calendar Time in Store

RHIC luminosity and polarization goals

Parameter	unit	Achieved	Enhanced design	Next Lumi upgrade
Au-Au operation		(2007)		(~2011)
Energy	GeV/nucleon	100	100	100
No of bunches		103	111	111
Bunch intensity	109	1.1	1.0	1.0
Average Luminosity	10 ²⁶ cm ⁻² s ⁻¹	12	8	40
p↑- p↑ operation		(2006/08)	(~2010)	(~2012)
Energy	GeV	100	100 (250)	250
No of bunches		111	111	111
Bunch intensity	10 ¹¹	1.5	2.0	2.0
Average Luminosity	10 ³⁰ cm ⁻² s ⁻¹	23	60 (150)	300
Polarization	%	60	70	70

Luminosity Limit – Intra-Beam Scattering (IBS)

- Debunching requires continuous gap cleaning
- Luminosity lifetime requires frequent refills
- Increased focusing decreased IBS ("IBS suppression" lattice)
- Cooling at full energy: stochastic and electron cooling

Luminosity Limit – Fast Instability Near Transition

Upgrades for heavy ion luminosity (Au-Au)

Main limits: IBS, transition instabilities

> Reduction in β * from 80cm to 50cm (+ 60%)

potential luminosity gains

(not all independent, cannot simply multiply)

- ➤ Lattice with reduced IBS (+ 25%)
- ➤ Blue longitudinal stochastic cooling (+ 15%)
- > Transverse stochastic cooling (+ 400%)
- > Transverse damper / scrubbing (+ 40%)
 (avoid beam emittance growth from transverse instability at transition)
- > 56MHz SRF (+ 40%) (eliminates satellite bunches, shorter vertex distribution)
- ➤ EBIS, begin commissioning in FY10↑ (reliability, U, ³He↑)

5-year projections Au-Au

5-year projections for Au-Au luminosity assuming 12 weeks of physics in every year min: no performance increase max: success of all major upgrade projects

Stochastic Cooling and 56 MHz SRF cavity

- ➤ Longitudinal bunched beam stochastic cooling demonstrated at 100 GeV/n in RHIC counteracting longitudinal IBS.
- ➤ Longitudinal stochastic cooling in Blue ring under construction

56 MHz SRF storage cavity:

- > Avoid rebucketing operation.
- > Greatly reduces satellite bunches
- > Quarter wave resonator

Stochastic cooling & 56 MHz SRF – luminosity increase

Calculation by M. Blaskiewicz.

RHIC – First Polarized Hadron Collider

Without Siberian snakes: $v_{sp} = G\gamma = 1.79 \text{ E/m} \rightarrow \sim 1000 \text{ depolarizing resonances}$ With Siberian snakes (local 180° spin rotators): $v_{sp} = \frac{1}{2} \rightarrow \text{no first order resonances}$ Two partial Siberian snakes (11° and 27° spin rotators) in AGS

Siberian Snakes

AGS Siberian Snakes: variable twist helical dipoles, 1.5 T (RT) and 3 T (SC), 2.6 m RHIC Siberian Snakes: 4 SC helical dipoles, 4 T, each 2.4 m long and full 360° twist

AGS Polarization

- ➤ Dual Partial Snake in AGS avoided depolarization from all vertical depolarizing resonances. Strong partial snakes also drive weak horizontal depol. resonances. (~5-10% polarization loss)
- Plan to use tune jump for horizontal resonances

Luminosity and Polarization Lifetimes in RHIC at 100 GeV

Run-7 and Run-8 $p\uparrow$ - $p\uparrow$ operation – polarization

> Source

- P = 80 82% in Run-8 after 85 89% in Run-7
- Aim for P = 85% in Run-9

> AGS

- Tested stronger snake and near integer horizontal tune in Run-7
- Tested injection on the fly (no flat bottom) in Run-8
- In both cases significant intensity dependent polarization
- Returned to Run-6 setup with P = 55% at extraction vs. P = 65% in Run-6 (half of the loss due to source, other half due to only 10 days of tuning)
- For Run-9 use Run-6 set-up with tune jump for horizontal resonances

> RHIC

- About 10% (absolute) lower P than in Run-6, more problems in Yellow
- Learned that horizontal orbit angle through snakes needs better control
- Need RHIC pC CNI polarimeter upgrade for better reliability

Luminosity Limit – Beam-Beam Tune Shift and Spread

- > First strong-strong hadron collider (after ISR)
- > Limits high luminosity pp operation
- > Cures: Non-linear (chromaticity) corrections, better working point, electron lens

potential luminosity gains

(not all independent, cannot simply multiply)

Upgrades for polarized protons

Main limits: beam-beam, p↑-operation

- > Reduction in β * from 100cm to 50cm (+ 70% at σ_s =1m)
- ➤ Nonlinear chromaticity correction (+ 30%)
- ➤ LEBT/MEBT/Booster modifications for p↑ (+ 20%)
- > 9 MHz cavity (+ 25% at β * = 1m, shorter vertex)
- ➤ Horizontal tune jumps in AGS (P + 5% absolute)
- > Horizontal orbit control in RHIC snakes (avoids P loss in RHIC)
- ➤ Mitigate 10 Hz triplet vibration (+ 5 10%)
 (passive or active stabilization of cold masses, removal of driving term, orbit feedback)
- ➤ Near integer working point (+ 40%) (requires mitigation of 10 Hz triplet vibrations)
- > 56 MHz cavity (operational flexibility, shorter vertex)
- > R&D items:
 - Spin flipper
 - Electron lens
 - Coherent electron cooling

BROOKHAVEN NATIONAL LABORATORY

5-year projections p↑-**p**↑

5-year projections for p\p-p\p luminosity assuming 12 weeks of physics in every year min: no performance increase max: success of all major upgrade projects

Tests of $\sqrt{s} = 9$ GeV Au - Au operation in RHIC

- 2008 blue beam lifetime: 3.5 minutes (fast), 50 minutes (slow)
- Sextupole reversal and elimination of octupoles clearly helped beam lifetime
- Injection efficiency and yellow beam lifetime can clearly benefit from further tuning

Luminosity scaling with energy

Low energy Au-Au operation – Luminosity upgrade options

E-cooling in RHIC

- \triangleright Luminosity limited by space charge (space charge limit $\Delta Q_{sc} = 0.05$)
- Expect 3-6 more luminosity when operating at space charge limit [A. Fedotov et al., C-A/AP/307]
- ➤ Electron cooling either with dc beam (Fermilab Pelletron) or with rf beam (56 MHz SRF gun, 703 SRF gun under construction)

Top-off mode

- ➤ Replace 1 4 RHIC bunches every AGS cycle, beam stays in RHIC only 3 7 min; ~ 2 3 more luminosity
- Needs modification of RHIC injection and extraction kickers and experiments need to stay on during continuous refill (likely ok, test desirable)

RHIC Upgrade Path

- \triangleright Next 1 2 years: "enhanced RHIC luminosity"
- \triangleright Next 3 4 years: additional \times 5 luminosity upgrade:
 - 0.5 m betastar for Au Au and p p operation (in progress)
 - Stochastic cooling in RHIC of Au beams
 - New storage rf system in RHIC (56 MHz SRF cavity)
 - Electron lens in RHIC for beam-beam compensation (R&D)
- ➤ EBIS (low maintenance linac-based pre-injector; all species incl. U and polarized ³He)
- ► eRHIC: high luminosity $(1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1})$ eA and pol. ep collider using 10 20 GeV electron driver, based on Energy Recovering Linac (ERL), and strong cooling of hadron beams

Electron Beam Ion Source (EBIS, ≥ 2010)

- New high brightness, high charge-state pulsed ion source, ideal as source for RHIC
- Produces beams of all ion species including noble gas ions, uranium (RHIC) and polarized He³ (eRHIC)
- Achieved 1.7×10^9 Au³³⁺ in 20 µs pulse with 8 A electron beam (60% neutralization)
- Construction schedule: FY2006 10

Energy Recovery Linac (ERL) Test Facility

- ➤ test of high current (several hundred mA), high brightness ERL operation
- > test of high current beam stability issues
- ➤ 5-cell cavity SRF ERL
- ➤ highly flexible lattice
- > 704 MHz SRF gun test
- > Start of the commissioning in 2009.

5 cell SRF cavity ==> arrived in BNL in March 2008.

ERL – based eRHIC Design

- ➤ 10 GeV electron design energy.

 Possible upgrade to 20 GeV by doubling main linac length.
- ➤ 5 recirculation passes (4 of them in the RHIC tunnel)
- ➤ Multiple electron-hadron interaction points (IPs) and detectors;
- ➤ Full polarization transparency at all energies for the electron beam;
- ➤ Ability to take full advantage of transverse cooling of the hadron beams;
- ➤ Possible options to include polarized positrons: compact storage ring; Compton backscattering; undulator-based. All options at lower luminosity.

Recirculation passes

NATIONAL LABORATORY

Coherent electron cooling

- > Idea proposed by Y. Derbenev in 1980, novel scheme with full evaluation developed by V. Litvinenko
- > Fast cooling of high energy hadron beams
- > Made possible by high brightness electron beams and FEL technology
- ~ 20 minutes cooling time for 250 GeV protons → much reduced electron current, higher eRHIC luminosity
- ➤ Proof-of-principle demonstration possible in RHIC using test ERL.

Pick-up: electrostatic imprint of hadron charge distribution onto comoving electron beam

Amplifier: Free Electron Laser (FEL) with gain of 100 -1000 amplifies density variations of electron beam, energy dependent delay of hadron beam

Kicker: electron beam corrects energy error of comoving hadron beam through electrostatic interaction

First stage of eRHIC: 2 GeV ERL inside RHIC tunnel @ IP2

Medium Energy Electron-Ion Collider (MEIC)

Located at IP2 (with a modest detector)

2 GeV e⁻ × 250 GeV p (45 GeV c.m.), $L \sim 10^{32}$ cm⁻² s⁻¹

Summary

Since 2000 RHIC has collided, at many different collision energies,

- Heavy and light ions
- Heavy on light on ions
- Polarized protons with 60 % beam polarization

Heavy ion luminosity exceeded enhanced luminosity goal

Successful test of Au collisions at very low energy (~ ½ normal injection energy)

Successful operation of longitudinal stochastic cooling

Future runs and upgrades:

- Factor 3 increase in proton luminosity with 70 % polarization
- High luminosity 250 x 250 GeV polarized proton run
- Uranium beams from EBIS
- \times 5 luminosity upgrade [$\sim 40 \times 10^{26}$ cm⁻² s⁻¹]
- eRHIC (Medium energy electron ion collider, coherent electron cooling)

